Antimicrobial Resistance and Sensitivity among Isolates of *Escherichia coli* from Urine Samples in Denizli, Turkey

Selma Kirac¹*, Dilek Keskin², F. Banu Karahasanoğlu³

¹Denizli Health Services Vocational High School, Pamukkale University, Denizli, TURKEY
²Cine Vocational High School, Adnan Menderes University, 09500- Cine-Aydin, TURKEY
³ER-PA Special Health Hospital, Denizli, TURKEY

*Email for Correspondence: skirac@pau.edu.tr

ABSTRACT

Objective: The research was carried out with isolate and determines the antimicrobial sensitivity in *E. coli* from urinary tract infections in special hospital in Denizli and recorded at specimens.

Methods: Urine samples (n=21) were collected from patients with signs and symptoms of Urinary tract infections. Bacteria were isolated and identified by conventional biochemical profile. Antibiotic resistance pattern of *E. coli* against different antibiotic was determined by Kirby-Baur method.

Results: The results revealed that sensitivity rate of antimicrobial agents were in the range of meropenem (100%), norfloxacin and ciprofloxacin (86%), cefotaxime (80%), aztreonam (76%). None of the samples showed no resistance to amikacin, ceftazidime, aztreonam, amoxicillin/clavulanic acid, and meropenem. Out of 21 isolates, 3(14%) isolates showed Multiple Antibiotic Resistance to thirteen antibiotics.

Conclusion: It is concluded that most of the urinary tract infections in human are caused by *E. coli* exhibited highest resistance to meropenem (100%), followed by norfloxacin and ciprofloxacin (86%).

Key words: *Escherichia coli*, Antibiotic, Resistance, Prevalence, MDR

INTRODUCTION

Antibiotic resistance is recognized worldwide as a major problem in the management of patients hospitalized with serious infections (Swartz, 1994). Turkish hospitals also face increasing numbers of antibiotic-resistant organisms including *Klebsiella pneumonia*, *Pseudomonas aeruginosa*, Methicillin resistance in *Staphylococcus aureus*, *Escherichia coli* (Toroglu and Keskin, 2011, Toroglu et al., 2013, Yakupoguları et al., 2006).

E. coli are gram negative, facultative bacteria that ferment glucose and are members of the family Enterobacteriaceae (Feng and Weagant, 2009). They are mainly allocated in the intestine of animals and forms part of the normal intestinal flora that maintains the physiology of a healthy animal (Conway and Macfarlane, 1995). Thus, most *E.coli* strains are nonpathogenic but pathogenic strains that cause gastrointestinal illness in humans and opportunistic ones that normally affect immune compromised patients exists (Nataro and Kaper, 1998). For example, more than 80% of urinary tract infections occur in outpatients and *E.coli* accounts for more than 50% of the infections in these patients (Blomgran et al., 2004, Jha and Bapat, 2003). In rare cases, virulent strains are also responsible for Haemolytic Uremic Syndrome (HUS), peritonitis, mastitis sepsisemia, and gram-negative pneumonia Olowe et al., 2003). It is one of the organisms most frequently isolated from different clinical cases of diarrhoea and others (Okeke et al., 1999, Tobih et al., 2006).

We aimed in these research to determine the status of antibiotic resistance, underlying conditions, and isolation of *E.coli* isolates with from a special hospital in Denizli, Turkey.
SUBJECTS AND METHODS

Isolation of bacterial strains and identification: 21 isolates were determined from special hospital patients in Denizli July and August in 2013 and recorded at specimens. Mac Conkey agar and EMB agar (Eosin Methylene Blue) agar used for E.coli isolation. Isolates were considered to be presumptive *Escherichia* spp. Gram-Negative bacilli, mucoid colonies and lactose positive. Confirmation of isolates was performed by using classic chemical tests (motility test, ure hydrolysis, acid production from mannitol, production of H₂S, IMVIC (Indol, Metil Red, Voges-Proskauer and Citrate) (Prakash et al., 2011, Cowan and Steel, 1970).

Antibiotic resistance activity

Antibiotic resistance was determined by an agar disc diffusion test (Bauer et al., 1996) using Mueller–Hinton agar (Difco) according to Clinical and Laboratory Standards Institute (CLSI, 2005) recommendations. Twenty different antibiotics were used. For antibiotic resistance determination, the isolates were grown in Luria- Bertani (LB) broth until the turbidity equal to the 0.5 Mc Farland standard. Cultures were swabbed on to the Mueller–Hinton agar and all isolates were tested against Meropenem (MEM, 10µg/ml), Piperacillin/ tazobactam (TZP, 110µg/ml), Amoxicillin/ Sulbactam (SAM, 20µg/ml), Amikacin (AK, 30µg/ml), Ceftazidime (CAZ, 30µg/ml), Tobramycin (TOB,10µg/ml), Amoxycillin /clavulanic acid (AMC, 30µg/ml), Gentamycin (CN, 10µg/ml), Aztreonam (ATM, 30µg/ml), Cefepime (FEP PM, 30µg/ml), Cefotaxime (CTX, 30µg/ml), Cefuroxime (CXM, 30µg/ml), Ceftiaxone (CRO, 30µg/ml), Sulphamethazol/Trimetroprim (SXT,25µg/ml), Ciprofloxacin (CIP,5µg/ml), Cefoperozone (CFP, 75µg/ml), Cephazolin (CZ, 30µg/ml), Norfloxaixin (NOR, 10µg/ml), Ampicillin (AM, 10µg/ml), Cefixime (CFM, 5µg/ml).

The isolates those grown in inoculation were evaluated as resistant, and the others were evaluated as susceptible (Bauer et al., 1996). The antibiotic discs were dispensed sufficiently separated from each other so as to avoid overlapping of inhibition zones. The plates were incubated at 37°C, and the diameters of the inhibition zones were measured after 18 h. All susceptibility tests were carried out in duplicate and were repeated twice if discordant results had been obtained.

Multiple Antibiotic Resistance Index:

For all isolates, we calculated the MAR index values (a/b, where a represents the number of antibiotics the isolate was resistant to, b represents the total number of antibiotics the isolate tested against). A MAR index value ≥ 0.2 is observed when isolates are exposed to high-risk sources of human or animal contamination, where antibiotics use is common; in contrast a MAR index value <0.2 observed when antibiotics are seldom or never used (Krumperman, 1985, Matyar et al., 2008).

Results

The sensitivity of E.coli isolates to antimicrobial agents (n=21) gave high sensitive rates found that E.coli isolates diffusion tests for meropenem (100%), norfloxacine and ciprofloxacine (86%), cefotaxime (80%), aztreonam (76%). None of the samples showed no resistance to amikacin, ceftazidime, aztreonam, amoxycillin/clavulanic acid, and meropenem. The results were given table 1.

DISCUSSION

Carbapenems, mainly meropenem, sensitivity rate of meropenem was showed in 100 %. Some researchers have reported meropenem sensitivity rate to E.coli from 100% to 90.9% (İnan and Gürler, 2004, Yılmaz et al., 2010, Barisic et al., 2003). Our results were similar to Yılmaz et al.(2010) who also reported that percentage of meropenem sensitivity was 100 % in Turkey. It can be suggested that meropenem can be used for infections based on E.coli.

Table1: Antibiotic resistance pattern of *Escherichia coli* isolated from urine samples

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Sensitive</th>
<th>Intermediate</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM</td>
<td>21(%100)</td>
<td>(%0)</td>
<td>(%0)</td>
</tr>
<tr>
<td>NOR</td>
<td>18(%86)</td>
<td>(%0)</td>
<td>3(%14)</td>
</tr>
<tr>
<td>CIP</td>
<td>18(%86)</td>
<td>(%0)</td>
<td>3(%14)</td>
</tr>
<tr>
<td>CTX</td>
<td>17(%80)</td>
<td>3(%14)</td>
<td>1(%5)</td>
</tr>
<tr>
<td>ATM</td>
<td>16(%76)</td>
<td>5(%24)</td>
<td>(%0)</td>
</tr>
<tr>
<td>CAZ</td>
<td>15(%71)</td>
<td>5(%24)</td>
<td>(%0)</td>
</tr>
<tr>
<td>FEP PM</td>
<td>15(%71)</td>
<td>5(%24)</td>
<td>1(%5)</td>
</tr>
<tr>
<td>CFM</td>
<td>13(%62)</td>
<td>5(%24)</td>
<td>3(%14)</td>
</tr>
<tr>
<td>CRO</td>
<td>12(%57)</td>
<td>6(%29)</td>
<td>3(%14)</td>
</tr>
<tr>
<td>TZP</td>
<td>12(%57)</td>
<td>9(%42)</td>
<td>(%0)</td>
</tr>
<tr>
<td>SXT</td>
<td>11(%57)</td>
<td>4(%19)</td>
<td>6(%29)</td>
</tr>
<tr>
<td>CFP</td>
<td>10(%48)</td>
<td>8(%34)</td>
<td>3(%14)</td>
</tr>
<tr>
<td>CXM</td>
<td>9(%42)</td>
<td>8(%38)</td>
<td>4(%19)</td>
</tr>
<tr>
<td>AMC</td>
<td>8(%38)</td>
<td>13(%62)</td>
<td>(%0)</td>
</tr>
<tr>
<td>AK</td>
<td>7(%33)</td>
<td>14(%67)</td>
<td>(%0)</td>
</tr>
<tr>
<td>CN</td>
<td>6(%29)</td>
<td>12(%57)</td>
<td>5(%21)</td>
</tr>
<tr>
<td>TOB</td>
<td>4(%19)</td>
<td>16(%76)</td>
<td>1(%5)</td>
</tr>
<tr>
<td>CZ</td>
<td>4(%19)</td>
<td>12(%57)</td>
<td>5(%21)</td>
</tr>
<tr>
<td>SAM</td>
<td>3(%14)</td>
<td>17(%80)</td>
<td>1(%5)</td>
</tr>
<tr>
<td>AM</td>
<td>1(%5)</td>
<td>10(%21)</td>
<td>10(%48)</td>
</tr>
</tbody>
</table>
When it comes to norfloxacin, sensitivity rate was 86%. Many researchers tested sensitivity of norfloxacin to *E. coli* (Karki et al., 2001, Ay et al., 2003).

Sensitivity rate of ciprofloxacin was shown in 86%. Many researchers have tested the sensitivity of ciprofloxacin to *E. coli* (Tumidge et al., 2002, Ayiyeoro et al., 2007, Mansouri et al., 2004). Our results were similar to Mansouri et al.,(2002) who also reported that percentage of ciprofloxacin sensitivity was 84.62% in Iran. It can be suggested that ciprofloxacin can be used for infections based on *E. coli*.

As for the sensitivity rate of cefotaxime, it was 80%. Many researchers have tested resistance of cefotaxime to *E. coli* (Jones et al., 2004, Gönüllü et al., 2008). Our results were similar to Gonlugur et al (2004) who also reported that sensitivity rate of cefotaxime was 84%.

Sensitivity rate of aztreonam was shown in 76%. Many researchers have tested the resistance of aztreonam to *E. coli* (Iqbal et al., 2002) who also reported that aztreonam sensitivity rate was 74%.

When it comes to ceftazidime sensitivity rate, it was 71%. Some researchers have reported that ceftazidime sensitivity rate from 99.6% to 4.5% (Rhonberg and Jones, 2007, Ozsahin et al., 2005). Our results were in compliance with previous researchers.

As for the sensitivity rate of piperacillin/ tazobactam, it was 57%. Tazobactam seems to be the most promising beta-lactamase inhibitor, which has unlike clavulanic acid and sulbactam, its own antibiotic activity (Blahova et al., 1995).

Sensitivity rate of sulfamethoxazole/trimethoprim was shown in 52%. Some researchers have reported sulfamethoxazole/trimethoprim sensitivity rate to *E. coli* in clinical samples (Gonlugur et al., 2004, Eryilmaz et al., 2010). Our results were similar to Gonlugur et al.(2004) who also reported that sulfamethoxazole/trimethoprim sensitivity rate was 55%.

As for the sensitivity rate of cefuroxime, it was 48%. Some researchers have reported sensitivity rate cefuroxime to *E. coli* in clinical samples (Ozsahin et al., 2005, Dean et al., 2008)

Sensitivity rate of cefuroxime was shown in 42%. Some researchers have reported sensitivity rate cefuroxime to *E. coli* in clinical samples (Ihan and Gurler 2004, Duman et al., 2010). In our study resistance of cefuroxime was detected 19%. Our results were similar to İhan and Gurler (2004) who also reported that resistance of cefuroxime showed 14% in *E. coli* strains isolated from children with urinary tract infections.

As for the sensitivity rate of amoxicillin-clavunat, it was 38%. Some researchers have reported amoxicillin-clavunat sensitivity rate to *E. coli* (Uzun et al., 2006, Kader and Kumar, 2004).

As for the sensitivity rate of amikacin, it was 33%. Some researchers have reported amikacin sensitivity rate to *E. coli* (Karki et al., 2001, Ekim et al., 1998, Çetin et al., 2006, Giray et al., 2012). In our study resistance of amikacin was detected 0%. Our results were similar to Giray et al., (2012) who also reported that resistance of amikacin showed 0% in *E. coli* strains obtained from urology outpatient clinic of Ege Medical Faculty in Izmir.

Among the aminoglycosides group, gentamycin sensitivity rate was 29%. Some researchers have reported gentamycin sensitivity rate to *E. coli* from 1.5% to 54% (Koksaltd-Motor et al., 2010, Kutlu, 2007, Pieboji et al., 2004, Kalem et al., 2008). Our results were compliance with previous researchers. Koksaltd-Motor et al., (2010) reported that when it compared to previous year’s data susceptibility of *E. coli* isolated from urine to gentamycin were decreased and also different resistance rate occurred different locations.
As for the sensitivity rate of tobramycin, it was 19%. Some researchers have reported tobramycin sensitivity rate to *E.coli* (Gonlugur et al., 2004, Sucu et al., 2004). Our results were similar to Gonlugur et al. (2004) who also reported that tobramycin sensitivity rate was 16.6%.

As for the sensitivity rate of cefazolin, it was 19%. Some researchers have reported that cefazolin sensitivity (Vlieghe, 2009, Arıkan et al., 1995, Frederick, 2011). Our results were in compliance with previous researchers.

As for sensitivity rate of ampicillin/sulbactam was 14%. Many researchers have tested sensitivity ampicillin/sulbactam to *E.coli* (Toroglu et al., 2013, Khan and Zaman, 2006).

As for sensitivity rate of ampicillin was 5%. Many researchers have tested the resistance of ampicillin to *E.coli* (Leblebicioğlu et al., 1994, Rawat et al., 2010, Ahmed et al., 2000). Our results were similar to Rawat et al. (2004) who also reported that aztreonam sensitivity rate was 5.71% from Kuma region.

In the present study, the lowest MAR index was 0 obtained from urine samples from female and male. In contrast to the highest MAR index was 0.65 obtained from a female. Out of 21 isolates, 3 (14%) isolates showed Multiple Antibiotic Resistance ten to thirteen antibiotics. The MAR index were determined 0.25 and above (Table 2). Some researchers have reported Multi-Drug Resistance rate to *E.coli* from 2% to 97% (Al-Mardeni et al., 2009, Mathai et al., 2008, Al-Tawfiq, 2006). Our results were in compliance with previous researchers. Study shows that multiple resistance is a common hospital pathogen.

<table>
<thead>
<tr>
<th>Source of isolates</th>
<th>Total isolates</th>
<th>MAR index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Male</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>0.65</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

In conclusion, it is suggested that meropenem, norfloxacin and ciprofloxacin, cefotaxime, aztreonam could be better for the treatment of infections based on *E.coli* according to the present study. Ampicillin/sulbactam and ampicillin were not-advisable antibiotics for *E.coli* infections according to results of the present study.

REFERENCES

Ay S, Işeri LA, Duman B. Antibiotic Susceptibilities of Gram Negative Microorganisms Isolated from Urine Samples. İnönü Üniv Tip Fak Derg,10(2) 59-62, 2003

Blahova J, Hupkova M, Kremery V Sr. The effectiveness of so called potentiated penicillins (augmentin and tazobactam) in vit ro.

Cas Lek cesk 1995: 134: 558-61

CLSI., 2005. Performance standards for antimicrobial susceptibility testing; 15th informational supplement. CLSI / NCCLS M 100-S 15. Clinical and Laboratory Standards Institute, Wayne, PA().

Giray B., Ucar FB., Aydemir SS.2012. Characterization of uropathogenic Esherichia coli strains obtained from urology outpatient clinic of Ege Medical Faculty in Izmir, Turk J Med Sci. 42(1) 1328-1337.

Yułuğkural Z, Mutlu B. Susceptibility of Escherichia coli strains isolated from urine cultures to some commonly used antibacterial agents Medical Journal of Trakya University; 24: 6-11, 2007

Authors Contributions

All the authors have contributed significantly in study design, experimentation, data analysis and manuscript drafting.